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Optimal Reconciliation of Seasonally Adjusted
Disaggregates Taking Into Account the Difference Between

Direct and Indirect Adjustment of the Aggregate

Francisco Corona1, Victor M. Guerrero2, and Jesús López-Peréz1

This article presents a new method to reconcile direct and indirect deseasonalized economic
time series. The proposed technique uses a Combining Rule to merge, in an optimal manner,
the directly deseasonalized aggregated series with its indirectly deseasonalized counterpart.
The lastmentioned series is obtained by aggregating the seasonally adjusted disaggregates that
compose the aggregated series. This procedure leads to adjusted disaggregates that verify
Denton’s movement preservation principle relative to the originally deseasonalized
disaggregates. First, we use as preliminary estimates the directly deseasonalized economic
time series obtained with the X-13ARIMA-SEATS program applied to all the disaggregation
levels. Second, we contemporaneously reconcile the aforementioned seasonally adjusted
disaggregates with its seasonally adjusted aggregate, using Vector Autoregressive models.
Then, we evaluate the finite sample performance of our solution via a Monte Carlo experiment
that considers six Data Generating Processes that may occur in practice, when users apply
seasonal adjustment techniques. Finally, we present an empirical application to the Mexican
Global Economic Indicator and its components. The results allow us to conclude that the
suggested technique is appropriate to indirectly deseasonalize economic time series, mainly
because we impose the movement preservation condition to the preliminary estimates
produced by a reliable seasonal adjustment procedure.

Key words: Combining rule; contemporaneous restrictions; Monte Carlo experiment; vector
autoregressive model; X-13ARIMA-SEATS.

1. Introduction

Seasonal adjustment of economic time series has been applied extensively by analysts at

the U.S. Census Bureau since the 1950s with a method developed by themselves, called

the “Census Method II”. A variant of that method, the X-11, is at the core of X-13ARIMA-

SEATS. In 1983, the Bank of Mexico carried out a systematic and formal seasonal

adjustment project for economic time series (see Guerrero 1990, 1992), and seasonal

adjustment has been implemented in the National Institute of Statistics and Geography,

Mexico (INEGI) since the 1990s according to procedures adopted by many official
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2 Instituto Tecnológico Autónomo de México (ITAM), Department of Statistics, Rio Hondo 1, Progreso Tizapán,
CP 01080, CDMX, Mexico. Email: guerrero@itam.mx
Acknowledgments: The views expressed here are those of the authors and do not necessarily reflect those of
INEGI. The authors gratefully acknowledge the comments and suggestions provided by five referees and the
Associate Editor in charge of our article. Victor M. Guerrero also acknowledges the financial support provided by
Asociación Mexicana de Cultura, A.C. Partial financial support from CONACYT CB-2015-25996 is gratefully
acknowledged by Francisco Corona.

Journal of Official Statistics, Vol. 37, No. 1, 2021, pp. 31–51, http://dx.doi.org/10.2478/JOS-2021-0002

http://dx.doi.org/10.2478/JOS-2021-0002


www.manaraa.com

statistics agencies around the world. Nowadays, official seasonal adjustment of economic

time series is carried out by INEGI using the X-13ARIMA-SEATS approach.

Additionally, for some relevant economic time series, such as the Gross Domestic

Product (GDP), the seasonal adjustment is carried out with the consensus of the Bank of

Mexico, the Ministry of Finance, and the Ministry of Economy.

The goal of seasonally adjusting time series is to obtain information free of seasonal

patterns, since these are not related to economic events or to government policies. That is

why seasonal adjustment is relevant to better determine the state of the economy and,

consequently, for policy making.

We can seasonally adjust a time series composed of several disaggregated time series

relatively easily, by directly applying the seasonal adjustment program to the aggregate.

Alternatively, we can use an indirect approach by applying the seasonal adjustment to each

individual series and aggregating the adjusted time series to obtain the adjusted aggregate.

However, the resulting adjusted series obtained indirectly will usually differ from the one

obtained directly.

In Mexico, official seasonal adjustment of an aggregated time series is carried out

directly. However, some users of seasonally adjusted figures consider the discrepancies

between a seasonally adjusted aggregate obtained indirectly with that obtained by a direct

method basically as a mistake. Therefore, the discrepancies between the two approaches

are considered unacceptable by those people, because they are difficult to interpret.

However, those users overlook the adequacy of the seasonal adjustment procedure

employed, because they tend to think that deseasonalization is essentially a linear

procedure that can be carried out by just clicking a button. If that were the case, the

adjustment results may lead in many situations to wrong conclusions.

There is a tradeoff between “structural” interpretation of the seasonal adjustment and its

statistical optimality. With the direct approach, we can verify the statistical properties of

the aggregated seasonally adjusted series, but the aggregation of the individual seasonally

adjusted components do not produce the directly adjusted aggregate. On the other hand,

the indirect approach produces an adequate structural explanation, but the statistical

properties of the seasonally adjusted aggregated series are not guaranteed. INEGI applies

the direct approach for seasonal adjustment, in order to ensure that all the time series

components are correctly deseasonalized.

A typical concern that arises with the direct approach is the desynchronizing of

movements between the aggregate and its components. For example, the adjusted Global

Economic Activity Indicator of Mexico (IGAE in Spanish), the monthly proxy of GDP,

decreased in September 2006, but its three adjusted Grand Economic Activities (GA)

increased. In contrast, in July 2007 the adjusted components of IGAE decreased, but IGAE

as a whole increased. Therefore, it is necessary to use a statistical procedure to reconcile

these results.

In this work, we refer to the statistical properties and optimality of the methods

employed. By this, we mean that we have to bear in mind that the seasonal adjustment

methodology arises from statistical models and assumptions leading to optimal

procedures, in terms of formal statistical criteria. Therefore, we should be able to identify

the assumptions underlying the methodology in order not to apply it as a cookbook recipe,

but as a formal statistical method. Once we do that, we need to validate the assumptions
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with the data at hand, so that the results produced by the methodology become empirically

valid. This, in turn, guarantees the optimality and reliability of the results.

Some authors have proposed to solve this problem by using benchmarking and statistical

models. For example, Den Butter and Fase (1991) use contemporaneous constraints, Di

Fonzo and Marini (2005) incorporate jointly contemporaneous and temporal constraints.

Additionally, Stuckey et al. (2004), Quenneville and Rancourt (2005), Dagum and

Cholette (2006) and Quenneville and Fortier (2012) propose to use two-step procedures,

while McElroy (2017) uses multivariate techniques to deseasonalize economic time series.

However, this problem still remains as observed by Guerrero et al. (2018).

In this article, we propose to use a particular case of the Combining Rule (CR) presented

in Guerrero and Nieto (1999) to multivariate time series in order to reconcile time series

previously deseasonalized with the X-13ARIMA-SEATS program, maintaining the

statistical properties of the direct approach, but restricting the linear aggregation of the

components to equal its seasonally adjusted aggregate.

This reconciliation approach is new, since we carry out this task by means of a CR that

provides optimal results, in the sense that the resulting deseasonalized series of

disaggregates is as close as possible to the directly deseasonalized disaggregates, subject

to the information provided by the directly seasonally adjusted aggregate. We emphasize

that this CR provides optimal results only when the assumptions underlying the statistical

model involved are valid, which have to be verified with the data at hand. Only when the

data provide the required empirical support for the model, can we say that the results

obtained with the CR are optimal.

This article is organized as follows. Section 2 provides a brief summary of the X-

13ARIMA-SEATS program and discusses some features of the direct and indirect

methods. Section 3 explains the CR in order to reconcile the deseasonalized time series

obtained with the direct approach. Section 4 describes the Monte Carlo experiment and

shows its results. Section 5 presents an empirical application to the components of IGAE.

Finally, Section 6 concludes.

2. A Brief Summary of X-13ARIMA-SEATS Seasonal Adjustment: Direct and

Indirect Approaches, and Reconciliation

We assume the classical “additive” time series decomposition for t ¼ 1; : : :; T

Yt ¼ Tt þ St þ It ð1Þ

where Yt is the observed time series, Tt is the trendcycle component, St is the seasonal

component and It is the irregular component. For example, Tt contains the longrun

movement of the time series plus fluctuations related to economic phenomena, St contains

the systematic patterns that occur in the corresponding time period (month or quarter) and

It, the unpredictable component that incorporates, for example, outliers and/or random

effects.

Alternatively, the previous equation can be expressed as the “multiplicative”

representation

Yt ¼ Tt £ St £ It: ð2Þ
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If we apply logarithmns to this representation, we can express this model again as additive.

For hybrid representations, say additive-multiplicative, see for instance, Findley et al.

(1998) and Ladiray and Quenneville (2012).

The essence of X-13ARIMA-SEATS lies in extracting the components Tt, St and It

using a variety of statistical methods. We emphasize the following two steps:

1. ARIMA regression: This step is useful to remove calendar effects, such as those of

trading days, leap year, Easter, outliers and structural breaks, among many others.

For this objective, we have to estimate a seasonal ARIMA model with exogenous

variables. This model is also used to generate backcasts and forecasts, which are

necessary to apply the seasonal filters in the next step.

2. Seasonal filters: The X-13ARIMA-SEATS program is based on the original X-11

sequence of predefined moving average filters, applied as an iterative process. After

the series is preadjusted and extended with backcasts and forecasts (as indicated in

the previous step), it goes through three rounds of filtering and extreme value

adjustments called: Initial Estimates, Final Seasonal-Irregular Ratios and Final

Components. The goal is to obtain Final Seasonal Factors, Final Seasonally Adjusted

Series, Final Trend Cycle and Final Irregular series.

Specifically, these two steps require a descriptive analysis, as well as to determine the

order of integration and the type of transformation to be applied to the time series. We then

need to estimate a Regression model with ARIMA errors (RegARIMA) (see Lytras et al.

2007), to select and apply the seasonal filters, to evaluate the assumptions of the

RegARIMA model and to verify that the adjusted time series does not show seasonal

patterns. Finally, we have to decide whether or not to apply the indirect method to the

aggregates. Alternatively, the TRAMO-SEATS (Gomez and Maravall, 1996) approach is

based on the estimation of ARIMA models from which we can extract the signals that

allow us to estimate the seasonal factors of the time series.

As we said before, in the direct method the deseasonalized time series, y1t; : : :; yNt and

the aggregate, Yt, are adjusted without considering any hierarchical structure. In the

indirect approach we consider specifically the case Yt ¼
PN

i¼1yit, so that the seasonally

adjusted aggregate is obtained as the sum of the components. In the basic indirect approach

it is important to consider that: (1) The disaggregates are directly deseasonalized,

consequently, these time series can be deseasonalized applying statistical criteria. (2) The

sum of the components generates the aggregate. Hence, the interpretation of Yt is very

simple. (3) The seasonal factors of Yt are not considered explicitly. And (4) consequently,

the seasonal factors of Yt are not estimated. Furthermore, we emphasize that the statistical

quality of the seasonal adjustment of Yt cannot be evaluated.

The first two points are in favor of the indirect method, while the rest support the direct

approach. Given this disjunctive, Eurostat recommends (Eurostat 2015, 34) that the best

way to proceed, from a statistical point of view, is to apply the direct method.

Alternatively, it is reasonable to apply benchmarking to the disaggregates in order to

satisfy contemporaneous restrictions and to verify that there is no residual seasonality.

Finally, it is necessary to have proper justification for applying any of the two approaches.

Frequently, the former argument is the most important to decide which method should be

selected and INEGI follows this recommendation.
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The problem of ensuring aggregation in a system of time series is commonly referred in

the literature as benchmarking to contemporaneous or temporal constraints. This way, the

reconciliation of systems of time series subjected to constraints is very common in official

statistics. The restrictions typically arise from national accounts systems, for example to

keep duality in the GDP accounts of uses and resources. Such accounting restrictions arise

from two main sources: first, contemporaneous constraints, so that some linear

combinations of the variables have to be fulfilled every observation period, and second,

temporal constraints, when the restrictions come from low frequency series whose high-

frequency counterparts must be in line with. Another important source of discrepancies, on

which this work is focussed, are those that arise from the seasonal adjustment process,

where benchmarking is used to restore the additivity in systems of directly deseasonalized

component series, in order to be in line with both the seasonally adjusted marginal

aggregates and the grand-total series.

The statistical procedures to realign a set of data in order to satisfy a set of accounting

restrictions is known in general as balancing or reconciliation for broad surveys in the area

(see Dagum and Cholette 2006; Pavı́a-Miralles 2010; Chen 2012; Infante 2017). In those

studies, the techniques are classified as balancing (to adjust variables), benchmarking of

time series (to adjust variables in the time dimension) and reconciliation (when the two

constraints are to be met), the latter is needed because in most cases the balancing

techniques do not preserve the dynamics of the related indicator. Reconciliation

techniques are divided into simultaneous and two-step approaches. The former includes

the works of Fernández (1981), Rossi (1982) and Di Fonzo (1990). However, when the

system of time series is very large so that a simultaneous solution is computationally

intensive, the two-step approach is necessary.

In particular, two-step reconciliation of direct seasonally adjusted series to meet

accounting restrictions have been studied by Di Fonzo and Marini (2005), Quenneville and

Rancourt (2005), Di Fonzo and Marini (2011), Quenneville and Fortier (2012), Di Fonzo

and Marini (2015), among many others. For example, Quenneville and Rancourt (2005)

restore the additivity of a system of deseasonalized time series in such a way that their sum

agrees with that derived from the totals. This is done by first applying additivity

benchmarking to every deseasonalized series and then a balancing procedure is applied to

the seasonal component series. More recent developments include Proietti (2011) and

McElroy (2018); the latter presents a solution to the phenomenon called crossaggregation

that is, the possibility that the aggregation of many series deemed to be nonseasonal may

exhibit seasonality.

Another statistical perspective of combining information can be applied to the problem

of data reconciliation. In that sense, Guerrero and Nieto (1999) and Guerrero and Peña

(2000, 2003) addressed the problem of combining information and derived an optimal CR

for both univariate and multivariate problems, respectively. The CR provides a unified

framework to attack time series problems, including forecast updating, missing data,

restricted forecasting, temporal disaggregation, outliers and structural changes, and

contemporaneous disaggregation. Particular cases of the CR include the solutions derived

by Lisman and Sandee (1964), Boot et al. (1967), Denton (1971) and Chow and Lin

(1971), among others.
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Fernáandez (1981) describes a temporal disaggregation technique working on a single

time series, as Lisman and Sandee (1964), Boot et al. (1967), Ginsburgh (1973) and

Litterman (1983) do. Rossi (1982) and Di Fonzo (1990) instead, deal with temporal

disaggregation of a system of time series. In addition, Rossi (1982) presents a two-step

adjustment procedure, Fernández (1981) – univariate – and Di Fonzo (1990) –

multivariate – which are natural extensions of Chow and Lin (1971).

The solution presented here uses the approach of Guerrero and Nieto (1999) to address

the additivity problem of a system of deseasonalized time series. We consider that this

approach makes efficient use of the available information by taking into consideration the

relations among variables through the covariance matrix, a typical problem faced in

National Statistics Agencies. Nonetheless, there are some recent advances in the literature

on two-step reconciliation, for example, a post-adjustment correction technique that is less

used in practice. In particular, those techniques are employed in statistical agencies that

have experts in the field (Infante 2017).

3. Combining Rule to Reconcile Deseasonalized Economic Time Series

The basic idea is to reconcile a deseasonalized time series vector using preliminary

estimates obtained with another method, in this case the time series directly

deseasonalized with the X-13ARIMA-SEATS program. Thus, we use multivariate time

series linear models to reconcile the preliminary estimates with respect to their aggregate,

verifying movement preservation between reconciliated time series and preliminary

estimates. The proposed reconciliation procedure is optimal from a statistical point of

view and is based on Vector Autoregressive (VAR) models. For this purpose, we consider

the CR of Guerrero and Peña (2000, 2003) to contemporaneously reconcile preliminary

estimates to an aggregate. Specifically, we consider the CR for multivariate time series

derived by Guerrero and Nieto (1999) where preliminary time series are subjected to some

contemporaneous restrictions.

Consequently, we define the vector to be reconciled as Z ¼ ðZ 01; : : :;Z
0
T Þ
0 where Zt is

of dimension k. Then, assume that Wt and W are preliminary estimates of Zt and Z so that,

Zt ¼Wt þ St; ð3Þ

where St admits a stationary VAR representation of order p $ 1, so that

PðBÞSt ¼ at; ð4Þ

with P(B) a polynomial matrix in the backshift operator B and {at} a sequence of zero

mean White Noise random vectors. If we let S be a vector defined in the same fashion as Z

we can write

PS ¼ a; ð5Þ

where E(a) ¼ 0 and E(aa0) ¼ IT ^S with IT the identity matrix, S ¼ E(at a0t)

and ^ denoting Kronecker product.
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The matrix P has the coefficients p1; : : :;pp of the polynomial P(B) that is,

P ¼

Ik 0 0 · · · 0 0

2p1 Ik 0 · · · 0 0

· · · ..
.

· · · . .
.

· · · · · ·

2pp 2pp21 2pp22 · · · 0 0

· · · ..
.

· · · . .
.

· · · · · ·

0 0 0 · · · 2p1 Ik

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

: ð6Þ

Then, given W, we assume the representation PS ¼ a also holds true, with

EðajWÞ ¼ 0 and Eðaa0jWÞ ¼ P ^S; ð7Þ

where P is a positive definite matrix, deduced from the data. We propose to use the same

VAR polynomial for both Zt and Wt which amounts to saying, in the present situation, that

both final and preliminary deseasonalized series share the same autocorrelation structure.

This is because we require a VAR model that enables us to capture the empirical

regularities in the data. In no way are we supposing that it is the right model. We do this in

order to avoid a time series identification problem.

Since the preliminary series {Wt} and that to be estimated {Zt}, admit the same VAR(p)

representation we have

PðBÞZt ¼ Dt þ aZ;t and PðBÞWt ¼ Dt þ aW;t; ð8Þ

where {aZ,t} and {aW,t} are White Noise processes, with covariance matrices SZ – SW

and with the vector Dt that contains deterministic elements. We also assume that there

exists a k 2 dimensional vector Y, containing some additional information about the vector

to be estimated. In our case, Y contains the aggregation of Z so that the contemporaneous

restrictions are given by

Yt ¼ c 0Zt for t ¼ 1; : : : T ; ð9Þ

with c – 0 a known constant k 2 dimensional vector, for instance c is a vector of 1s when

the aggregation corresponds to a sum, or c has 1/k in all its entries when the aggregation is

given by an average.

Finally, Guerrero and Nieto (1999) show that the estimator of Z, given W and Y, is

obtained from the CR as

Ẑ ¼Wþ AðY 2 CWÞ; ð10Þ

with

CovðẐ 2 ZjWÞ ¼ ðIkT 2 ACÞC; ð11Þ

where

A ¼ CC 0ðCCC 0Þþ and C ¼ P21ðP ^SÞP21 0 ð12Þ
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where C is a known matrix used to represent the contemporaneous restrictions and the

superindex þ denotes Moore-Penrose generalized inverse.

The empirical strategy to obtain Ẑ, as proposed by Guerrero and Nieto (1999) is as

follows:

1. Use the direct approach suggested by X-13ARIMA-SEATS to obtain the

deseasonalized time series Wt of the disaggregates of Yt, consequently Wt contains

the preliminary estimates of Zt.

2. Estimate a VAR(p) model for Wt using Ordinary Least Squares (OLS), which amounts

to using P ¼ I as a tentative assumption. By using OLS we allow for the presence of unit

roots and cointegration, which might be present since seasonally adjusted data is

typically at least I(1). To carry out this step, identify the VAR model for the

disaggregates in levels. Then, choose the number of lags by either an automatic

procedure, namely by minimizing the AIC, BIC or HannanQuinn criteria, or by means of

the likelihood ratio procedure. For more information on this issue see Lütkepohl (2005).

3. Use the estimates of the VAR(p) to compute Â ¼ ĈC0(CĈC0)þ where Ĉ ¼ P̂21Ŝ

P
ˆ 210. Then, calculate Ẑt, as well as the estimated variance Ŝ with the usual unbiased

expression provided by OLS.

4. Compute the discrepancies D*
t ¼ Ẑt 2 Wt.

5. Test if D*
t is multivariate uncorrelated. We use the Portmanteau and the Breusch-

Godfrey tests for serially correlated errors to this end.

6. If the null hypothesis is not rejected, finish the procedure. Otherwise, assume that

LD* ¼ (Q ^ I)PD* ¼ u where Q is a non-singular matrix such that QPQ0 ¼ I. In

this case note that

Eðuu 0jWÞ ¼ ðQ ^ IÞðP ^SÞðQ 0^ IÞ ¼ I ^S; ð13Þ

and

C ¼ P21ðP ^SÞP21 0 ¼ L21ðI ^SÞL21 0 : ð14Þ

Consequently, repeat steps 2 and 3 to D*
t using the OLS estimates to obtain Z̃t as well

as Ŝ which now includes the autocorrelation structure, that is, we propose to use a

feasible version of Generalized Least Squares (GLS) to guarantee the optimality of

the results according to Guerrero and Nieto (1999).

7. In order to empirically verify that the final vector of discrepancies D*
t ¼ Z̃t 2 Wt is

unbiased (zero mean) and stationary, that is, movement preservation is achieved,

Guerrero and Corona (2018) propose to use a statistical method to prove this hypothesis.

It is important to comment that the term A(Y 2 CW) added to the seasonally adjusted

disaggregate time series, see Equation (10), may distort the optimality of the seasonal

adjustment by adding some seasonality back in. We are aware of this undesired effect, but it

requires further investigation, for example following McElroy’s (2018) ideas. Thus, as a

future work, we should design a diagnostic procedure that enables an analyst to check for this

situation and suggest a remedy, but our current proposal does not consider this type of
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situation in detail. Also, note that GLS allows for the possibility of such error by having a

variance-covariance matrix different from the identity. Our procedure is akin to Cochrane-

Orcutt’s since it allows us to incorporate the error autocorrelation in the parameter estimation,

letting the resulting VAR polynomial for the error to be decided by the data themselves.

When the elements of Wt are co-integrated, the VAR model in levels is equivalent to its

respective Vector Error Correction (VEC) representation. Consequently, the procedure

previously described is valid for some types of non-stationarity in the preliminary time

series, and stationary transformations are not considered appropriate when estimating the

VAR model for Wt. Also, if D*
t is stationary, that is, the movement preservation is

achieved, the estimate of Z̃t and Wt are cointegrated. If Wt are non-stationary and non-

cointegrated, the proposed procedure performs as a benchmarking method and its sample

performance should be studied, particularly by way of a Monte Carlo analysis.

Additionally, Guerrero and Nieto (1999) show that we can include deterministic regressors

in the VAR model. Moreover, note that if the k2dimensional vector c contains the term 1/s,

where s is the number of periods of the year (for example, s ¼ 12 for monthly data), the

restrictions are temporal. This is equivalent to the force procedure in X-13ARIMA-SEATS.

It is convenient to emphasize the distinction between the extension of Denton’s

procedure considered by Di Fonzo and Marini (2005) and the method proposed in this

article. The former procedure focuses on the movement preservation principle, which is

highly desirable. However, it does not indicate how to validate the assumptions of the

underlying statistical model that leads to the benchmarking formulas. On the contrary, the

work of Guerrero and Nieto (1999) seeks to accomplish both tasks; firstly, by paying

attention to the empirical validation of the VAR model with the available data, and then by

taking into account the aggregated series as a set of restrictions to be fulfilled. This is what

we schematically presented in the empirical strategy of this article.

4. Monte Carlo Experiment

4.1. Seasonal Dynamic Factor Model

In order to evaluate the finite sample performance of the suggested reconciliation

procedure, we carried out a Monte Carlo experiment where the time series are simulated

using Seasonal Dynamic Factor Models (SDFM). We propose the use of SDFM since we

wish to simulate different situations that can occur in practice, mainly when INEGI deals

with time series subjected to a seasonal adjustment process. The idea of the SDFM is that

the observations, Zt, are generated by common movements plus individual seasonal

patterns. The SDFM is expressed as follows

Zt ¼ lFt þ 1t;

ðI 2 FBÞFt ¼ aþ btþ ht;

ðI 2 VBsÞðI 2 GBÞ1t ¼ ut;

ð15Þ

where l is the loading matrix of dimension k £ r (r , k), that indicates the contribution of

the common factors, Ft, on the observations. The common factors, their disturbances, ht,
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and the constant vectors, a and b, are of dimension r and the linear trend is denoted as t.

On the other hand, the idiosyncratic component, 1t, and the errors, ut, are k 2 dimensional

random vectors. The diagonal coefficient matrices are F, G and V. Finally, we assume the

covariance matrices Sh and Su are positive-definite.

We should note several econometric implications of this SDFM. First, the seasonal

patterns are specific for each time series, that is, there are not dynamic dependences among

the time series. Second, the stochastic nature of the time series depends on both the

stationarity of the common factors and the idiosyncratic component. If both Ft and 1t are

integrated of order zero, the observed time series are stationary. If Ft is integrated of order

one and 1t is stationary, Zt are cointegrated, being Ft the common trends. If Ft , I(0) and

1t , I(1), Zt are non-stationary but not cointegrated. Finally, if both Ft and 1t are I(1), Zt

are also random walks.

It is interesting to realize that when the variance of the common factors is much larger

than the variance of the idiosyncratic component, the seasonal pattern will only have a

small impact on the observations. Thus, in order to avoid this situation, the configuration

of the parameters in the Monte Carlo analysis considers serial correlation in the

idiosyncratic components and weak cross-correlation.

4.2. Configuration

The configuration of the SDFM was discussed with analysts working at INEGI’s Directorate

of Econometric Studies in order to simulate different time series that cover several situations

that the analysts usually deal with in practice. This way, we consider six Data Generating

Process (DGP) and the number of monthly (s ¼ 12) time series are k ¼ 4, hence, we take

into account three disaggregates and one aggregate with a time span of T ¼ 200

observations. We consider R ¼ 500 replicates for each DGP, also called model. In our

simulations Z1 is obtained as the sum of the other three time series generated by the SDFM.

The loadings matrix is simulated as l , N (0, 1) for each replicate, maintaining the

loading weights fixed for each DGP, Sh ¼ diag(1), a ¼ 50 and a seasonal behavior given

by V ¼ diag (U , (21, 1)). Consequently, we have R different seasonal patterns. Finally,

we allow for weak cross-sectional correlated idiosyncratic errors by simulating a

covariance matrix as follows

X

u

¼

6:94 9:80 8:74

9:80 13:91 11:94

8:74 11:94 13:53

0

B
B
@

1

C
C
A

Following Bai and Ng (2002), among many others, we define Su as such to allow for cross

section dependence in the idiosyncratic components so that the model has an approximate

factor structure. It is more general than a strict factor model, which assumes no correlation,

so that the results hold also for strict factor models. Specifically, we simulate this matrix as

Su ¼ X0X where the elements of X are simulated as U , (1, 2).

The first model (M1) considers r ¼ 1 common factor with F ¼ 0.5 and b ¼ 0.1 and the

idiosyncratic component is White Noise. The second model (M2) is simulated as the M1

model but with G ¼ diag(0.5). Consequently, in this model the seasonal idiosyncratic
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errors are also serially correlated. The third model (M3) is as the M1 model, but with

F ¼ 1 and b ¼ 0. Hence, the pairs of elements of Zt are cointegrated. The fourth model

(M4) is a hybrid model with two common factors, one non-stationary and another

stationary, F ¼ (1, 0.5) and G ¼ diag(0.25). The fifth model (M5) considers one

stationary common factor, F ¼ (0.5) and G ¼ diag(1), that is, in this model the time series

are non-stationary and non-cointegrated. Finally, the sixth model (M6) is as the M5 model

but with F ¼ 1, in other words, the time series are pure random walks. In sum, the main

idea is to generate different stationary and non-stationary time series, with serially

correlated errors or non-stationary and weak cross-sectionally correlated elements with

different seasonal patterns among them.

Carrying out good preliminary estimation is very important to attain accurate final

estimates with similar statistical properties. Thus, we compute the F-test on seasonal

dummies proposed by Lytras et al. (2007) to check for the presence of deterministic

seasonality. This test is based on the estimates of the regression dummy variables and the

corresponding t-statistics of the RegARIMA model, by computing

F M ¼
x̂

11
£

T 2 d 2 h

T 2 d

where x̂ ¼ b̂0 [var (b̂)]21 b̂, with b̂ the RegARIMA coefficients, d is the number of

stationary differences and h the number of estimated parameters in the RegARIMA model.

Note that the null hypothesis indicates that all the parameters are simultaneously equal to

zero, which denotes the absence of seasonality. In each replicate, we adjust a RegARIMA

model with seasonal dummy variables, where the ARIMA parameters are automatically

detected by using the procedure of Hyndman and Khandakar (2008)

In order to empirically verify movement preservation, we verify that D*
t has zero mean,

with both a t-test and an ADF test for the discrepancies to be stationary. Furthermore, it is

worth mentioning that INEGI’s seasonal adjustment personnel carefully deseasonalize one

series at a time, without resorting to an automatic model with the X-13ARIMA-SEATS

program. They assess every step when applying the program: order of integration, type of

transformation, ACF and PACF analysis of time series, selection of exogenous variables,

analysis of residuals of the RegARIMA model, study of the seasonal factors, and so on.

As noted in the Introduction, a motivation of this article is to produce deseasonalized

time series that can appropriately explain the movements of the aggregates with those of

the disaggregates. The direct method does not guarantee that result, contrary to the

reconciled indirect method proposed in this work. Therefore, for the preliminary time

series, we decided to compute in each replicate the positive fails, PT ¼
PT

t¼1Pt and the

negative fails, NT ¼
PT

t¼1 Nt where

Pt ¼ ð1j7Yt . 0;7Wt , 0Þ; ð16Þ

and

Nt ¼ ð1j7Yt , 0;7Wt . 0Þ ð17Þ

where 7 operator, defined as a function of the backshift operator B, as 7 ¼ 1 2 B. These

measures count the number of “fails”, in a structural sense, by using the direct method for

the seasonal adjustment.
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4.3. Results

To verify that the preliminary estimates used by automatic X-13ARIMA-SEATS,

correctly deseasonalize time series, Figure 1 shows box-plots of the p-values for the F M

tests obtained when applying the direct and automatic method for each time series and the

six models (M1 to M6).

The F M test results indicate that in all cases, the residual time series are free of seasonal

patterns across series and models. Consequently, the preliminary estimates constitute an

appropriate input to apply our suggested approach. To empirically evaluate movement

preservation, we introduce the following MP statistic, which we calculate for each model

MP ¼
XR

r¼1

MPr=R:

with

MPr ¼ ð1jpmean;r . a; pADF;r , aÞ

where pmean,r is the p-value of the t test for mean difference between Ẑt and Wt, pADF,r is

the p-value of the ADF test applied to D*
t and a is the significance level. This statistic

indicates the percentage of times that D*
t is jointly unbiased and stationary. The results are

summarized in Table 1.

Note that, in this case, movement preservation is more frequently achieved for

stationary or cointegrated models. It is reasonable to expect that once the seasonal pattern
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Fig. 1. Z1 is the sum of the other three series. The p-values F M tests obtained when applying the direct method

for each time series and model. The dotted line indicates the significance value a ¼ 0.05.
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is removed from Zt, when there are common trends any transformation of them will remain

cointegrated.

However, for all models the movement preservation is frequently achieved. Otherwise,

although the restrictions are satisfied, we cannot empirically verify the assumption that

validates the procedure, where Wt and Zt follow the same VAR(p) model. Figure 2 shows

graphs of the empirical performance of sign changes between at least one disaggregate

with its respective aggregate, for the six models. For each model, we present two

histograms, one for positive fails calculated as indicated by Equation (16) and the other for

negative fails, calculated as in Equation (17). In each graph, the horizontal axis has the

number of fails, while the vertical axis shows the observed frequencies for each interval of

fails.

We can see that models M1 and M3, and its hybrid M4, exhibit a smaller number of fails

very often, and a larger number of fails rarely with some peaks. Let us recall that model

M4 is a hybrid of M1 and M3, in which the time series are cointegrated, unless l1 ¼ 0.

These three models are slightly more complicated than models M2, M5, and M6, and thus

more regularly show sign changes with a smooth decay in the number of fails.

The main conclusion of these results is related to the fact that, when the time series have

common movements in the short and/or long run, and the individual component is weakly

serially correlated, the synchronization among the disaggregates and its aggregate tends to

have more fails. Note that we have a total of R £ T ¼ 100; 000 possibilities of fails in each

model, consequently, the maximum percentage is around 1.4%. Then, when we use the

Table 1. MP statistic with a ¼ 0.05.

Model MP

M1 0.97
M2 0.97
M3 0.98
M4 0.99
M5 0.88
M6 0.88

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80

M1

fails
100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80

M2

fails
100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80

M3

fails
100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80

M4

fails
100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80

M5

fails
100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80

M6

fails
100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80
fails

100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80
fails

100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80
fails

100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80
fails

100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80
fails

100 140

20
15

10
fr
eq
ue
nc
y

5
0

0 20 40 60 80
fails

100 140

Fig. 2. Frequency of the number of fails due to applying direct seasonal adjustment. Top panel corresponds to

Pt and bottom panel indicates Nt.
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direct method, the percentage of inconsistencies tends to be small and when we restrict the

preliminary estimates with contemporaneous restrictions, the inconsistencies disappear.

5. Empirical Application

The empirical application was carried out with IGAE and its three Grand Economic

Activities (GA), to verify that movement preservation of the preliminary time series are

satisfied, as well as the structural explanation of the monthly variations. Additionally, to

provide a basis for comparison we applied the procedure suggested by Stuckey et al.

(2004), denoting the reconciled estimates by this procedure as Ŵt.

We first define the vector of linear restrictions c ¼ (0.032, 0.342, 0.627), which we

obtain by recursively solving a system of simultaneous equations with the original series.

We refer to the components of IGAE as GA1 for the primary activities, GA2 to the

industrial activities and GA3 to the services, according to the North American Industrial

Classification System 2018.

Here, we follow what is nowadays the standard practice of VAR modelling. We

recommend the interested reader to refer to Lütkepohl (2005) for details on this topic. The

deterministic specification of the VAR model considers both constant and linear trend. We

select the length of the VAR model according to the Schwarz criterion and for Wt we

obtain as optimum number of lags, p ¼ 1. The Johansen test of cointegration indicates two

cointegration relationships, hence, the VEC and VAR models are equivalent. Therefore,

we estimate the parameters to obtain Ẑt and by applying the Portmanteau and the Breusch-

Godfrey test for D*
t, we conclude that it is autocorrelated with p-value of 0.0.

Consequently, we estimate a VAR model by GLS without constant nor trend to D*
t , with

p ¼ 12 chosen with Schwarz criterion. Now, we obtain Z̃t and to verify the unbiasedness

of the new vector of discrepancies, we apply a t-test for means obtaining p-values of 0.99

for the three cases. Additionally, the ADF-tests indicate that the components of D*
t are

stationary, providing evidence that movement preservation is achieved. Also, the elements

of
PT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~Ztj 2 WtjÞ

2
q

=T ¼ (0.044, 0.101, 0.077) are very small, indicating that the

preliminary time series are very close to the vector of final estimates. Considering c, we

obtain a weighted average of 0.084. On the other hand, with the Stuckey et al. (2004)

approach the discrepan cies are also stationary and we obtain the following vector of root

mean squared discrepancies of
PT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŴtj 2 WtjÞ

2
q

=T ¼ (1.223, 0.019, 0.063), with a

weighted average of 0.085. Consequently, our suggested approach yields, on average,

slightly smaller differences between preliminary and final estimates, which is mainly due

to the fact that the GA1 is considerably better adjusted.

Once we verified movement preservation, we now aim to guarantee the structural

explanation between the aggregate and its disaggregates. Note that by definition

Yt ¼
P3

i¼1ciZ̃it which in turn implies DYt ¼
P3

i¼1D
~Zit. As we commented in the

Introduction, in September 2006 all components of IGAE decreased but IGAE increased,

and the opposite happened in July 2007.

Table 2 shows the monthly percentage changes for the preliminary estimates, final

estimates and the reconciled estimates produced with the method of Stuckey et al. (2004).

We can see in Table 2 that in September 2006, IGAE decreased 0.03% and the

preliminary estimates indicates that GA1, GA2 and GA3 increased by 2.02%, 0.05% and
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0.12% respectively, which is a very confusing result. Alternatively, our estimates indicate

that this drop in the economy is attributed to decreases in GA2 and GA3, that is, the

industrial and services sectors, although the primary sector increased. On the other hand,

the estimates produced by the method of Stuckey et al. (2004) indicate that the decrease is

attributed to decreases in GA1 and GA3.

In July of 2007, IGAE increased 0.09% but the preliminary estimates had growths of

22.93%, 20.14% and 20.12% respectively for the three GA. Similarly to the previous

case, this growth in the economy is explained by positive growths in GA2 and GA3. The

estimates provided by the method of Stuckey et al. (2004) point out that the growth of

IGAE is due to positive growths in GA1 and GA3. However, since the weight of GA1 with

respect to the total economy is modest (0.032), it is more plausible to attribute the

movement of the whole economy to GA2 and GA3. In this sense, our proposal produces

results that can be considered more reasonable, as can be seen in Figure 3.

This figure allows us to visually appreciate in particular how movement preservation is

achieved. For GA1 the results obtained with the CR follow more closely those of the

preliminary estimates, for GA2 the results obtained with Stuckey et al. (2004) are slightly

better, and for GA3 are practically the same. Consequently, our suggested approach is an

alternative to indirect seasonal adjustment, with the advantage that it can be validated

empirically, since it is supported by statistical models. Once the empirical validation is

achieved, we can claim statistical optimality of the results produced by our method.
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Fig. 3. Deseasonalized components of IGAE. Solid lines are the preliminary estimates (Wt), dotted-dark lines

are the series reconcilied with the CR (Ẑt) and the dotted-light lines are seasonally adjusted series with the

procedure of Stuckey et al. (2004) (Ŵt).
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6. Conclusions and Further Research

In this work, we propose to use a particular case of the CR of Guerrero and Peña (2000,

2003), exposited in Guerrero and Nieto (1999) to reconcile the disaggregates obtained as

directly deseasonalized time series, produced by X-13ARIMA-SEATS, with its respective

aggregate. The suggested approach is based on estimating a VAR(p) model for the

preliminary estimates (disaggregates), on the assumption that they follow the same model

as the vector to be restricted.

If the discrepancies between the reconciled time series and the preliminary estimates are

White Noises, the model estimation is finished; otherwise, a new VAR(p) model for the

discrepancies has to be estimated in order to consistently estimate the final restricted time

series. Then, we empirically verify movement preservation between the reconciled time

series and the preliminary estimates.

We evaluate the finite sample performance of the proposed procedure by means of a

Monte Carlo study that considers six DGPs that simulate different situations that may

occur when dealing with correlated seasonal time series. Specifically, we try to simulate

situations faced by INEGI’s personnel in charge of seasonal adjustment. We conclude that

the suggested approach allows us to jointly attain structural explanation and movement

preservation in several cases. For instance, with respect to the observed discrepancy

between the disaggregates of IGAE with its aggregate in September 2006 and July 2007,

we verified that the suggested procedure adequately reconciles the preliminary estimates.

This approach can be applied to different banks of official information, since the

procedure is supported by just a few assumptions to guarantee its optimality from a

statistical point of view; additionally, it is easy to implement computationally. In contrast,

its main disadvantage is that the suggested approach relies on estimating several

parameters. Consequently, this method is feasible only when the sample size is much

larger than the number of disaggregate time series.

In fact, the proposed method works well with VAR models of moderate dimension, no

more than around ten disaggregated series. In that case, the number of parameters for the

ten equations involved in a VAR(p) model will require estimating p £ 100 regression

parameters. Thus, the explosion of parameters in situations where the sample size is

moderate (around 120 observations), will render the method infeasible or, at least,

inaccurate. For that reason, we should bear in mind that sparse modelling may be needed

for large dimensional situations (see Hsu et al. 2008; Davis et al. 2016; and Wilms et al.

2017). Another possibility could be to use a Bayesian VAR (BVAR) model with for

instance, a Minnesota prior, as in Doan et al. (1984) and (Lütkepohl, 2005 chap. 5).

It should also be clear that our proposal does not provide an easy-to-use method that

could be applied by everyone working at a statistical agency. Its application requires

familiarity with formal statistical model building, which we consider indispensable

nowadays for people in charge of applying seasonal adjustment techniques professionally.

Further research related to the Monte Carlo experiments is required, so that we should

consider more hierarchical structures in sectoral time series, different number of time

series and observations of those time series and common seasonal patterns. Also, it would

be advisable to take into account different types of serial correlation in the idiosyncratic
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errors. It is also advisable to study the non-stationary, but non-cointegrated case, which

theoretically requires to estimate a VAR(p) model in first differences.
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